Ústav inženýrství pevných látek
Chiralni nanomaterialy pro medicinské aplikace
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Václav Švorčík, DrSc. |
Anotace
Chiralita je základní vlastností přírody. V oblasti medicíny je klíčovým rysem chirality různá biochemická aktivita opačných organických enantiomerů. V poslední době chiralita se promital i do světa nanomateriálů– byly syntetizovány první nanomateriály, které v sobě zahrnují chiralitu v rámci jednotlivých jednotek/nanočástic (podobně jako organické enantiomery). Biologická a biochemická aktivita těchto materiálů se teprve začíná zkoumat. V tomto světle je klíčová otázka, zda se situace s různou aktivitou a vlastnostmi jednotlivých organických molekul bude se opakovat v případě jejich větších analogů – chirálních nanomateriálů. Cílem této práce je najít odpověď na tuto velmi zajímavou otázku. Během realizaci práce bude připravena řada chirálních nanomateriálů a bude studována jejich aktivita a potenciál pro interakci s buňkami a bakteriemi.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Chirálni nanomaterialy pro medicinské aplikace
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | doc. Mgr. Oleksiy Lyutakov, Ph.D. |
Anotace
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Chytré antimikrobiální materiály
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Václav Švorčík, DrSc. |
Anotace
V současnosti kolem 80 % bakteriálních onemocnění pochází od biofilmů. Biofilm představuje bakteriální kolonii, která je ukotvená na povrchu a natočena specifickou “zdí”, díky čemuž je schopna se bránit běžné antimikrobiální léčbě. Další nebezpečné jevy probíhající v biofilmu souvisí s bakteriálním quorum-efektem a velkým rizikem vývoje rezistence vůči antibiotikům. Proto prevence tvorby a ničení biofilmů představuje jednu z klíčových otázek v oblasti materiálů pro medicínu. Tradiční způsoby jako je inkorporace antimikrobiálních látek nejenže často selhávají, ale mohou vést i k řadě nežádoucích efektů, jako je nárůst výše zmíněné resistivity vůči antibiotikům nebo dalším antimikrobiálním látkám. V této práci bude realizován nový způsob obrany medicinských povrchů proti biofilmům – použití povlaků na bázi smart materiálů. Díky svému složení tyto povrchy zaručí dvojitou obranu – prevence před bakteriální kolonizaci a současně jsou schopny uvolňovat antimikrobiální sloučeniny.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Chytré materiály pro tkáňové inzenyrstvi
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Václav Švorčík, DrSc. |
Anotace
Adheze a růst lidských buněk na povrchu materiálů pro medicínské aplikace (kožní a kostní implantáty, implanty chlopní a náhrady cév) je složitý proces, který probíhá v několika postupných fázích. Z hlediska realizace jednotlivých stupňů musí mít materiál často různé a někdy i zcela odlišné vlastnosti (např. lokální mechanické nebo chemické „pnuti“ je vhodné pro adhezi buněk a absence takového pnutí je významná pro jejich proliferaci). Takové „opačné“ vlastnosti je obtížné dosáhnout v rámci jednotlivých materiálů. Lze je úspěšně implementovat v případě chytrých, přepínatelných materiálů. Hlavní myšlenkou tohoto projektu je vytvoření chytrých materiálů pro medicinské aplikace. Takové materiály mohou postupně měnit své vlastnosti v průběhu času, např. mají lokální stresová centra pro buněčnou adhezi a imobilizaci a poté mění svou strukturu, aby podporovaly buněčnou proliferaci. Realizace této práce umožní zavést nové principy a přístupy v oblasti materiálů pro medicinské použiti a regenerativní medicínu a také výrazně zlepšit úroveň zdravotnické péče.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Interakce buněk s periodickými nano- a mikrostrukturovanými povrchy
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Petr Slepička, Ph.D. |
Anotace
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Jednoatomové katalyzátory pro palivové články
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | doc. Mgr. Oleksiy Lyutakov, Ph.D. |
Anotace
Metanol a čpavek jsou v současnosti považovány za paliva budoucnosti. Jejich použití úzce souvisí s vývojem palivových článků, u kterých je nutné provádět „studenou“ oxidaci metanolu a čpavku s maximální energetickou účinností. V současné době je však takový proces téměř nemožné realizovat pomocí „klasických“ a běžné dostupných materiálů a katalyzátorů. V této práci bude navřena příprava a testovaní mono-atomových katalyzátorů, tzn. atomárních redox-aktivních center zabudovaných do 2D materiálů nebo 3D struktur s velkým měrným povrchem. Příprava jednoatomových katalyzátorů bude prováděna řadou inovativních technik, které využívají elektrochemické postupy nebo depozici z plynné faze a nebo i kombinaci těchto metod. Takové katalyzátory by měly poskytovat vysoce účinnou oxidaci metanolu nebo čpavku při pokojových teplotách a atmosférickém tlaku, což potenciálně umožní učinit další krok ve vývoji energetiky budoucnosti a tak zajistit udržitelnou budoucnost.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Konverze CO2 s použitím obnovitelných zdrojů energie
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | doc. Mgr. Oleksiy Lyutakov, Ph.D. |
Anotace
V současnosti využití a konverzi CO2 lze považovat za extremně důležitou otázku. Dostupné metody zachycování a konverze CO2 (tj. příprava monomerů/polymerů nebo methanolu z CO2) vyžadují velmi náročné experimentální podmínky a jsou extrémně náročné z hlediska energetické spotřeby. Navrhovaná práce se zaměří na vytvoření nové generace materiálů, které budou schopny zajistit konverzi CO2 s použitím světelných zdrojů energie (ideálně - slunečního světla). V podstatě budou řešeny dvě klíčové otázky: zachycení a využití CO2 ze vzduchu (na rozdíl od běžných metod předchozí separace CO2) a implementace obnovitelných zdrojů energie (sluneční světlo) pro konverzi CO2 např. na monomery nebo methanol.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Laserově indukovaný dewetting ušlechtilých kovů pro přípravu bimetalických nanočástic
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Petr Slepička, Ph.D. |
Anotace
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Li-free baterie – vývoj nových materiálů pro skladování energie
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | doc. Mgr. Oleksiy Lyutakov, Ph.D. |
Anotace
Základem moderní energetiky a mnoha elektronických zařízení (od mobilních telefonů až po elektromobily) jsou jejich baterie. Bohužel většina moderních baterií pracuje na principu redukce/oxidace lithia. Získávání lithia je však technologicky složitý a ekologicky velmi problematický proces, který kompletně niveluje současné trendy v zavádění „zelené“ energie. K omezeni použití lithia v je nutné vyvinout nové materiály, které poskytují efektivní skladovaní energie pomocí alternativních kovů, jako je např. hořčík nebo zinek. Cílem této práce je nalézt podobné materiály pro konstrukci elektrod v hořčíkových nebo zinkových bateriích. Jako výchozí bod využijeme řadu našich dosavadních výsledků, spočívajících ve vytváření rozvětvených uhlikovych nanostruktur nebo 2D materiálu dopovaných redox-aktivními atomy, které dokážou efektivně zajistit oxidaci a redukci hořčíku a zinku (stejně jako průběh podpůrných elektrochemických procesů.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Pokročilé baktericidní povlaky s dlouhodobým účinkem
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Jakub Siegel, Ph.D. |
Anotace
Vědecký úkol zaměřený na optimalizaci ukotvení kovových nanočástic na polymerních nosičích pro přípravu nové generace antimikrobiálních povrchů. K imobilizaci nanočástic budou využity fyzikální metody založené na interakci částic s laserovým zářením. Antibakteriální účinky a biokompatibilita vyvinutých povrchů budou vyhodnoceny ve spolupráci s Ústavem biochemie a mikrobiologie VŠCHT Praha a Fyziologickým ústavem AV ČR.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Pokročilé materiály pro konverzi atmosférického dusíku na čpavek
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Václav Švorčík, DrSc. |
Anotace
Čpavek je nezbytnou součásti výroby hnojiv a taky je povazován za účinný prostředek přenosu energie. Ovšem současna výroba čpavku je velmi náročná z hlediska energetické spotřeby a taky je založena z velké míry na použiti fosilních paliv, tzn. neobnovitelných materiálových zdrojů. Proto se hledají alternativní moznosti přípravy čpavku z běžných materiálových zdrojů jako jsou atmosféricky dusík a voda. Ideálně tato příprava by mela byt méně energeticky náročná než konvenční. Tato práce je zaměřena na studium a inovativních hybridních materiálů schopných aktivovat dusík a zajistit jeho chemické proměny na čpavek. Jedna se o výzkum v oblasti elektrochemicky nebo foto-elektrochemicky aktivních materiálu, mezi kterými patří cela rada sloučenin na bázi boridu, sulfidu, kovových slitin a tak dále. Hlavním cílem práci bude vyvinout katalyzátor, v respektive radu katalyzátorů, které zaručí moznost dosáhnout vysoké Faradayové a kvantové účinnosti v reakci aktivaci dusíku a výroby čpavku.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Pokročilé materiály pro redukci a oxidaci vody
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | doc. Mgr. Oleksiy Lyutakov, Ph.D. |
Anotace
Potřeba ochrany životního prostředí a vývoje udržitelných zdrojů energie vede k vývoji energetiky založené na „vodíku“, která poskytuje z ekologického hlediska ideální „materiálový cyklus“. Jedna důležitá otázka v této oblasti však dosud zůstává nevyřešená – příprava/výroba levného a „zeleného“ vodíku. Běžné metody, kdy se vodík vyrábí z ropy, nelze považovat za optimální. Proto v poslední době byla velká pozornost zaměřena na tzv. „zelený“ vodík, tj. vodík vyrobený z vody elektrolýzou. „Běžnou elektrolýzu“ však také nelze považovat za perfektní metodu z hlediska energetické náročnosti. Navrhovaná práce bude zaměřena na využití především světlem řízeného štěpení vody s minimálním zapojenim jiných zdrojů energie. Bude vyvinuta a použita nová generace materiálů, které jsou schopny účinné absorbovat celé spektrum slunečného záření a iniciovat fotolýzu vody při osvícení.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Pokročilé materiály pro výrobu zeleného vodíku
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Václav Švorčík, DrSc. |
Anotace
Práce je zaměřena na vývoj nových materiálů zaměřených na řešení klíčových problémů v oblasti dělení vody. Zejména mluvíme o štěpení mořské vody, elektrolýze při vysokých proudových hustotách, přímém či nepřímém zapojení sluneční energie. Jako materiály bude studována celá řada nových sloučenin, jako jsou vysoko entropické kompozity, mono-atomické katalyzátory, stabilizované klastry atd.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Přepínatelné superkapacitory pro inteligentní skladování energie
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Chemie a technologie materiálů ( výuka v českém jazyce ) |
Školitel: | prof. Ing. Václav Švorčík, DrSc. |
Anotace
Vývoj společnosti vede k odchodu od nenahraditelných zdrojů energie a přechodu k obnovitelným alternativám. Vzhledem k tomu, že obnovitelná energie obvykle prochází fází „konzervace“ ve formě elektřiny, vyvstává otázka, jak elektřinu skladovat. Tento problém lze vyřešit pomocí struktur, jako jsou superkondenzátory, které jsou schopny ukládat a uvolňovat relativně velké množství elektřiny a nevyžadují „přístupy“ na bázi lithia (na rozdíl od baterií). Použití superkondenzátorů je však omezeno jejich neřízenou rychlostí vybíjení. Tato práce je zaměřena konkrétně na tvorbu chytrých materiálů a struktur, které umožní řídit vybíjení superkondenzátorů. Jako základ pro takové materiály budou použity chytré hydrogely dopované uhlíkovými nanostruktury s velkým měrným povrchem. Uhlíkové nanostruktury budou zodpovědné za celkové množství náboje uskládaného superkondenzátorem. Přepínání stavu chytrého hydrogelu umožní regulovat rychlost vybíjení superkondenzátoru – dosáhnout pulzních hodnot výstupní energie nebo naopak konstantního vybíjení bez poklesu výstupního napětí. Jako typické aplikace takových materiálových struktur mohou být uvedeny ostrý záblesk fotoaparátu nebo nepřetržitý provoz mobilního telefonu „do posledního procenta nabití“, realizované v rámci jednoho zásobníku energie bez zavádění dalších jednotek elektroniky.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
SERS-ANN pro medicínu a diagnostiku
Garantující pracoviště: | Ústav inženýrství pevných látek |
Studijní program/specializace: | Léčiva a biomateriály ( výuka v českém jazyce ) |
Školitel: | doc. Mgr. Oleksiy Lyutakov, Ph.D. |
Anotace
SERS (povrchově zesílena Ramonaova spektroskopie) poskytuje jedinečnou schopnost detekovat velmi nízké koncentrace analytů včetně medicínsky relevantních sloučenin, jako jsou např. léky, jejich metabolity nebo markery onemocnění. Použití SERS při měření reálných vzorků je však značně omezováno interferencí, protože celkový analyticky signál je produkován jak cílovou molekulou, tak i velkým počtem dalších molekul přítomných v reálním vzorku. K vyřešení tohoto problému jsme navrhli a v současné době vyvíjíme přístup SERS-ANN, který sestává z kombinace měření SERS a umělé inteligence pro zpracování spektrálních dat. Cílem této práce je další rozvoj tohoto přístupu, jeho kvantitativní i kvalitativní zdokonalování včetně sběru spektrálních databází i zavedení multimodální detekce či variabilních vstupních dat (např. kombinace SEPS a IR nebo MS analytických metod). Hlavním přínosem práce bude zavedení přístupů, které dosáhnou větší spolehlivosti a jednoduchosti v analytické a medicínské chemii a zároveň výrazně zjednoduší práci zdravotnického personálu.
kontaktujte vedoucího práce
Místo výkonu práce:
Ústav inženýrství pevných látek, FCHT, VŠCHT Praha
Aktualizováno: 16.2.2022 22:00, Autor: Jan Kříž