Chemistry (double degree)
Doctoral Programme,
Faculty of Chemical Technology
Joint study programme with foreign universities - two diplomas for one study.
The aim of the programme is to educate highly qualified creative workers and researchers with theoretical and practical knowledge in the field of strategy, design and practical implementation of synthesis of special inorganic and organic compounds, materials and polymers. Our aim is to deepen the chemical, physicochemical and chemical-engineering knowledge of the graduate who should be capable of independent creative activities and taking decisions in the field of research and development in chemistry as well as many related or interdisciplinary fields. CareersThe graduate will be able to design targeted syntheses of inorganic, organic and polymeric materials and coordination compounds with predefined physical, electrochemical, catalytic and biochemical properties to be applied in pharmacy, nanotechnology, electronics and catalysis, characterize them and theoretically interpret the obtained data. In the field of macromolecular chemistry, she/he will be prepared to solve problems related to the processing, recycling and use of polymers including the conservation and restoration of cultural heritage objects. Acquired knowledge may vary according to the nature of dissertation, ranging from purely experimental-interpretation character to knowledge based on quantum mechanics, thermodynamics or other theoretical models used to describe the structure and behavior of matter. The acquired skills also include knowledge of information technologies, ability to lead a scientific team, project preparation and management as well as publishing skills. Programme Details
Ph.D. topics for study year 2024/25Exploration of the Fe-W-O system for magnetism and photo(electro) chemistry
AnnotationThe aim of this study is to capitalize on the richness of the crystalline, magnetic and electronic structures and photocatalytic properties of W-based oxides by investigating the Fe-W-O system. It is proposed to focus on Fe2WO6 as it crystallizes in three different structures exhibiting different transport and magnetic properties. It is of interest to study the thermodynamic conditions in this area of the ternary diagram Fe-W-O to monitor and optimize precise composition and synthesis conditions. Structures and microstructures will be studied by suitable diffraction methods and microscopies. Compounds will be characterized by measuring their magnetic and electrical properties; those with suitable bandgap will also be tested for photocatalytic or photoelectrochemical properties relevant to catalytic degradation of organic pollutants, water splitting or photovoltaic cells.
Contact supervisor
Study place:
Department of Inorganic Chemistry, FCT, VŠCHT Praha
|
Updated: 21.1.2022 15:24, Author: Jan Kříž