Wait a second...
stdClass Object
(
    [nazev] => Faculty of Chemical Technology
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => oranzova
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => 
    [ga_account] => 
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 0
    [pozadi1] => 5_DSC0122.jpg
    [pozadi2] => pozadi_09.jpg
    [pozadi3] => pozadi_12.jpg
    [pozadi4] => pozadi_5.jpg
    [pozadi5] => 
    [robots] => User-agent: *
Disallow: /studijni-system/

    [htmlheaders] => 
    [newurl_domain] => 'fcht.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8547/4159/1396
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 1396
    [platne_od] => 31.10.2023 10:51:00
    [zmeneno_cas] => 31.10.2023 10:51:21.495244
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 1705
    [cms_time] => 1713553424
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => /
            [logo] => 
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON 
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461337
VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright UCT Prague 2017
Informations provided by the Dean's Office. Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:kundrato@vscht.cz [social_fb_title] => [social_tw_title] => [social_yt_title] => [google_search] => 001523547858480163194:u-cbn29rzve [aktualizovano] => Updated [autor] => Author [drobecky] => You are here: UCT Prague - FCT [zobrazit_kalendar] => Read Calendar [archiv_novinek] => News archive [submenu_novinky_rok_title] => News from the year. [api_obor_druh_N] => Master's degree [charakteristika] => Profile of the programme [vice] => more [navaznosti] => Continue to [uplatneni] => Alumni profiles [studijni_plan] => Complete curriculum [mene] => less [api_obor_druh_B] => Bachelor's degree [vyucuje_se_na_ustavech] => Departments [paticka_mapa_alt] => [studijni_plan_povinne_predmety] => Obligatory Subject [studijni_plan_volitelne_predmety] => Optional Subject [den_kratky_2] => Tue [den_kratky_3] => Wed [zobrazit_vice_kalendar] => More → [novinky_kategorie_1] => UCT Events [novinky_kategorie_2] => Important Dates [novinky_kategorie_3] => Student Events [novinky_kategorie_4] => Fun [novinky_kategorie_5] => Science [novinky_archiv_url] => /news [novinky_servis_archiv_rok] => Annual Archive [novinky_servis_nadpis] => News Settings [novinky_dalsi] => More News [intranet_odkaz] => http://intranet.vscht.cz/ [intranet_text] => Intranet [logo_mobile_href] => / [logo_mobile] => [mobile_over_nadpis_menu] => Menu [mobile_over_nadpis_search] => Search [mobile_over_nadpis_jazyky] => Languages [mobile_over_nadpis_login] => Login [menu_home] => Homepage [zobraz_desktop_verzi] => switch to desktop version [zobraz_mobilni_verzi] => switch to mobile version [paticka_mapa_odkaz] => /faculty/contact [nepodporovany_prohlizec] => For full access, please use different browser. [preloader] => Wait a second... [hledani_nadpis] => hledání [hledani_nenalezeno] => Nenalezeno... [hledani_vyhledat_google] => vyhledat pomocí Google [hledani_platnost] => platnost: [hledani_platnost_do_neomezene] => neomezeně [social_in_odkaz] => [dokumenty_kod] => [dokumenty_nazev] => [dokumenty_platne_od] => [dokumenty_platne_do] => [social_li_odkaz] => ) [poduzel] => stdClass Object ( [4565] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [4575] => stdClass Object ( [obsah] => [iduzel] => 4575 [canonical_url] => //fcht.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [4573] => stdClass Object ( [obsah] => [iduzel] => 4573 [canonical_url] => //fcht.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [4574] => stdClass Object ( [obsah] => [iduzel] => 4574 [canonical_url] => //fcht.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 4565 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [4566] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [6330] => stdClass Object ( [nazev] => Profile of the Faculty of Chemical Technology [seo_title] => Profile of the Faculty of Chemical Technology [seo_desc] => Faculty of Chemical Technology University of Chemistry and Technology Prague UCT Prague [autor] => [autor_email] => [obsah] =>
Nobel Prize winner Vlado Prelog, versatile chemist Emil Votoček, inventor of soft contact lenses Otto Wichterle and many other prominent FCHT graduates helped enhance the fields of study taught at the faculty. At present, these fields embrace development of new (bio) materials with unique properties, alternative sources of energy preparation with (as yet) unknown substances and new medical drugs, and even methods for preserving national cultural heritage. We are training experts who shift the boundaries of knowledge while being aware of their responsibility for maintaining the fragile natural balance. As the classic has put it: "Cherchez chemie!" How true.

We offer studies in interesting and promising directions of advanced chemistry

  • Biomaterials for medical purposes (metallic, ceramic and polymeric implants)
  • Materials of special properties (nanomaterials, optical waveguides, superconductors)
  • Catalysis, reactor engineering, modeling and informatics in chemistry
  • Drugs synthesis and manufacturing
  • Pharmaceuticals, fragrances, chemical specialties
  • Glass, ceramics; crystals; plastics, rubbers
  • Conservation and restoration of historical monuments (metallic, wooden and stone)

Research and Development

Research and development activities in the faculty are oriented around basic and applied research in chemistry, chemical technology, and the chemistry of materials (metallic, inorganic non-metallic, polymeric and composite). The faculty is important partner for the chemical and materials industries in both the Czech Republic and abroad.

[iduzel] => 6330 [canonical_url] => //fcht.vscht.cz/home [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [9870] => stdClass Object ( [nazev] => Faculty of Chemical Technology [seo_title] => Faculty of Chemical Technology [seo_desc] => Faculty of Chemical Technology University of Chemistry and Technology Prague UCT Prague [autor] => [autor_email] => [obsah] =>
The Faculty of Chemical Technology is one of four Faculties of UCT Prague, consisting of ten departments and one joint laboratory shared by UCT Prague and Czech Academy of Sciences.

We offer advanced studies into interesting and promising directions of advanced chemistry

  • Biomaterials for medical purposes (metallic, ceramic, and polymeric implants)
  • Materials of special properties (nanomaterials, optical waveguides, superconductors)
  • Catalysis, reactor engineering, modeling and informatics in chemistry
  • Drugs synthesis and manufacturing
  • Pharmaceuticals, fragrances, chemical specialties
  • Glass, ceramics; crystals; plastics, rubbers
  • Conservation and restoration of historical monuments (metallic, wooden and stone)

Research and Development

Research and development activities in the faculty are oriented towards basic and applied research in chemistry, chemical technology, and the chemistry of materials (metallic, inorganic non-metallic, polymeric and composite). The faculty is an important partner forchemical and materials industries both in the Czech Republic and abroad.

[iduzel] => 9870 [canonical_url] => //fcht.vscht.cz/faculty [skupina_www] => Array ( ) [url] => /faculty [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [11667] => stdClass Object ( [nazev] => Studies [seo_title] => Studies [seo_desc] => [autor] => [autor_email] => [obsah] =>

Student's guide to UCT Prague

Housing and canteens

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 11667 [canonical_url] => [skupina_www] => Array ( ) [url] => /studies [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [9869] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => Research Faculty of Chemical Technology University of Chemistry and Technology UCT Prague [autor] => [autor_email] => [obsah] =>

Research activities at the Faculty of Chemical Technology are complementary to educational activities. They can be divided into the two following areas:

Chemistry and Technology of Materials

  • Development of new metals, polymers, and ceramic materials
  • Biomaterials for medicinal use
  • Corrosion
  • Composite materials
  • Superconductors and materials for optoelectronics
  • Microanalytical methods and methods of analysis of structural and phase analysis of materials
  • Physical chemistry methods for solid materials surface modification
  • Chemical stability of materials of monuments
  • Solving problems in the polymorphism of substances.

Chemistry and Chemical Technology

  • Design and optimization of chemical and electrochemical reactors
  • Kinetics of catalyzed and non-catalyzed reactions
  • Preparation and characterization of novel catalysts
  • Modelling and simulation of chemical processes
  • Chemical processes waste treatment
  • Fine chemicals
  • Chemical and electrochemical synthesis of novel compounds
  • Development, optimization and theoretical study of pharmaceutical processes 

The faculty offers expert consultation and development work in all of the above areas. Individual departmental pages contain more detailed information about research activities.

[iduzel] => 9869 [canonical_url] => //fcht.vscht.cz/research [skupina_www] => Array ( ) [url] => /research [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [11710] => stdClass Object ( [nazev] => Sitemap [seo_title] => Sitemap [seo_desc] => [autor] => [autor_email] => [obsah] => [iduzel] => 11710 [canonical_url] => //fcht.vscht.cz/sitemap [skupina_www] => Array ( ) [url] => /sitemap [sablona] => stdClass Object ( [class] => sitemap [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 4566 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Research
    [seo_title] => Research
    [seo_desc] => Research Faculty of Chemical Technology University of Chemistry and Technology UCT Prague
    [autor] => 
    [autor_email] => 
    [obsah] => 

Research activities at the Faculty of Chemical Technology are complementary to educational activities. They can be divided into the two following areas:

Chemistry and Technology of Materials

  • Development of new metals, polymers, and ceramic materials
  • Biomaterials for medicinal use
  • Corrosion
  • Composite materials
  • Superconductors and materials for optoelectronics
  • Microanalytical methods and methods of analysis of structural and phase analysis of materials
  • Physical chemistry methods for solid materials surface modification
  • Chemical stability of materials of monuments
  • Solving problems in the polymorphism of substances.

Chemistry and Chemical Technology

  • Design and optimization of chemical and electrochemical reactors
  • Kinetics of catalyzed and non-catalyzed reactions
  • Preparation and characterization of novel catalysts
  • Modelling and simulation of chemical processes
  • Chemical processes waste treatment
  • Fine chemicals
  • Chemical and electrochemical synthesis of novel compounds
  • Development, optimization and theoretical study of pharmaceutical processes 

The faculty offers expert consultation and development work in all of the above areas. Individual departmental pages contain more detailed information about research activities.

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'fcht.vscht.cz' [newurl_jazyk] => 'en' [newurl_akce] => '/research' [newurl_iduzel] => 9869 [newurl_path] => 8547/4159/1396/4566/9869 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 9869 [platne_od] => 24.03.2015 14:24:00 [zmeneno_cas] => 24.03.2015 14:26:46.560556 [zmeneno_uzivatel_jmeno] => Stephanie Krueger [canonical_url] => //fcht.vscht.cz/research [idvazba] => 13953 [cms_time] => 1713553424 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [12790] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [12791] => stdClass Object ( [nadpis] => [popis] => [platne_od] => [platne_do] => [odkaz] => [text_odkazu] => [obrazek_pozadi] => laborator_bafa43.jpg [barva_textu] => [iduzel] => 12791 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) ) [iduzel] => 12790 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) [11688] => stdClass Object ( [nazev] => Industrial Projects [seo_title] => Industrial Projects [seo_desc] => Industrial Projects Faculty of Chemical Technology University of Chemistry and Technology Prague UCT Prague [autor] => [autor_email] => [obsah] =>

[poduzel] => stdClass Object ( [12790] => stdClass Object ( [obsah] => [iduzel] => 12790 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) ) [iduzel] => 11688 [canonical_url] => //fcht.vscht.cz/research/industrial-projects [skupina_www] => Array ( ) [url] => /research/industrial-projects [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [11686] => stdClass Object ( [nazev] => Selected Papers [seo_title] => Selected Papers [seo_desc] => Selected Papers Faculty of Chemical Technology University of Chemistry and Technology Prague UCT Prague [autor] => [autor_email] => [obsah] =>

Important Papers


Selected Papers (2015)

  • Ajami, A.; Husinsky, W.; Svecova, B.; Vytykacova, S.; Nekvindova, P., Journal of Non-Crystalline Solids 2015, 426, 159-163.
  • Ambrosi, A.; Chia, X. Y.; Sofer, Z.; Pumera, M., Electrochemistry Communications 2015, 54, 36-40.
  • Ambrosi, A.; Sofer, Z.; Pumera, M., Small 2015, 11 (5), 605-612.
  • Ambrosi, A.; Sofer, Z.; Pumera, M., Chemical Communications 2015, 51 (40), 8450-8453.
  • Asadi, M.; Asadi, Z.; Savaripoor, N.; Dusek, M.; Eigner, V.; Shorkaei, M. R.; Sedaghat, M., Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2015, 136, 625-634.
  • Barczi, T.; Travnickova, T.; Havlica, J.; Kohout, M., Chemical Engineering & Technology 2015, 38 (7), 1195-1202.
  • Bartunek, V.; Junkova, J.; Suman, J.; Kolarova, K.; Rimpelova, S.; Ulbrich, P.; Sofer, Z., Materials Letters 2015, 152, 207-209.
  • Baudys, M.; Krysa, J.; Zlamal, M.; Mills, A., Chemical Engineering Journal 2015, 261, 83-87.
  • Bohm, S.; Makrlik, E.; Vanura, P., Monatshefte Fur Chemie 2015, 146 (2), 215-217.
  • Bohm, S.; Makrlik, E.; Vanura, P.; Klepetarova, B.; Sykora, D., Monatshefte Fur Chemie 2015, 146 (11), 1795-1798.
  • Bohm, S.; Makrlik, E.; Vanura, P.; Klepetarova, B.; Sykora, D., Monatshefte Fur Chemie 2015, 146 (8), 1229-1231.
  • Bousa, D.; Jankovsky, O.; Sedmidubsky, D.; Luxa, J.; Sturala, J.; Pumera, M.; Sofer, Z., Chemistry-a European Journal 2015, 21 (49), 17728-17738.
  • Brozova, L.; Zitka, J.; Sysel, P.; Hovorka, S.; Randova, A.; Storch, J.; Kacirkova, M.; Izak, P., Desalination and Water Treatment 2015, 55 (11), 2967-2972.
  • Brozova, L.; Zitka, J.; Sysel, P.; Hovorka, S.; Randova, A.; Storch, J.; Kacirkova, M.; Izak, P., Chemical Engineering & Technology 2015, 38 (9), 1617-1624.
  • Brunclikova, M.; Hubika, Z.; Kment, S.; Olejnicek, J.; Cada, M.; Ksirova, P.; Krysa, J., Research on Chemical Intermediates 2015, 41 (12), 9259-9266.
  • Capek, J.; Vojtech, D.; Oborna, A., Materials & Design 2015, 83, 468-482.
  • Cibulka, R., European Journal of Organic Chemistry 2015, (5), 915-932.
  • Cutroneo, M.; Malinsky, P.; Mackova, A.; Matousek, J.; Torrisi, L.; Slepicka, P.; Ullschmied, J., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2015, 365, 384-388.
  • Elashnikov, R.; Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Svorcik, V., Reactive & Functional Polymers 2015, 93, 163-169.
  • Elashnikov, R.; Radocha, M.; Rimpelova, S.; Svorcik, V.; Lyutakov, O., Rsc Advances 2015, 5 (105), 86825-86831.
  • Eng, A. Y. S.; Sofer, Z.; Huber, S.; Bousa, D.; Marysko, M.; Pumera, M., Chemistry-a European Journal 2015, 21 (47), 16828-16838.
  • Flidrova, K.; Liska, A.; Ludvik, J.; Eigner, V.; Lhotak, P., Tetrahedron Letters 2015, 56 (12), 1535-1538.
  • Gajdos, L.; Sperl, M.; Bystriansky, J., Journal of Pressure Vessel Technology-Transactions of the Asme 2015, 137 (5).
  • Gajdos, L.; Sperl, M.; Bystriansky, J., Materiali in Tehnologije 2015, 49 (2), 243-246.
  • Giovanni, M.; Ambrosi, A.; Sofer, Z.; Pumera, M., Electrochemistry Communications 2015, 56, 16-19.
  • Goudarziafshar, H.; Rezaeivala, M.; Khosravi, F.; Abbasityula, Y.; Yousefi, S.; Ozbek, N.; Eigner, V.; Dusek, M., Journal of the Iranian Chemical Society 2015, 12 (1), 113-119.
  • Gregorova, E.; Cerny, M.; Pabst, W.; Esposito, L.; Zanelli, C.; Hamacek, J.; Kutzendorfer, J., Ceramics International 2015, 41 (1), 1129-1138.
  • Grivani, G.; Baghan, S. H.; Vakili, M.; Khalaji, A. D.; Tahmasebi, V.; Eigner, V.; Dusek, M., Journal of Molecular Structure 2015, 1082, 91-96.
  • Grivani, G.; Ghavami, A.; Eigner, V.; Dusek, M.; Khalaji, A. D., Chinese Chemical Letters 2015, 26 (6), 779-784.
  • Gusmao, R.; Sofer, Z.; Sembera, F.; Janousek, Z.; Pumera, M., Chemistry-a European Journal 2015, 21 (46), 16474-16478.
  • Hadac, O.; Kohout, M.; Havlica, J.; Schreiber, I., Physical Chemistry Chemical Physics 2015, 17 (9), 6458-6469.
  • Hartman, T.; Sturala, J.; Cibulka, R., Advanced Synthesis & Catalysis 2015, 357 (16-17), 3573-3586.
  • Havlica, J.; Jirounkova, K.; Travnickova, T.; Kohout, M., Powder Technology 2015, 280, 180-190.
  • Hermanova, S.; Zarevucka, M.; Bousa, D.; Pumera, M.; Sofer, Z., Nanoscale 2015, 7 (13), 5852-5858.
  • Hlasek, T.; Rubesova, K.; Jakes, V.; Nekvindova, P.; Kucera, M.; Danis, S.; Veis, M.; Havranek, V., Optical Materials 2015, 49, 46-50.
  • Hlasek, T.; Rubesova, K.; Jakes, V.; Nekvindova, P.; Oswald, J.; Kucera, M.; Hanus, M., Journal of Luminescence 2015, 164, 90-93.
  • Holubova, B.; Cilova, Z. Z.; Kucerova, I.; Zlamal, M., Progress in Organic Coatings 2015, 88, 172-180.
  • Honetschlagerova, L.; Janouskovcova, P.; Kubal, M.; Sofer, Z., Environmental Technology 2015, 36 (3), 358-365.
  • Chanda, D.; Hnat, J.; Dobrota, A. S.; Pasti, I. A.; Paidar, M.; Bouzek, K., Physical Chemistry Chemical Physics 2015, 17 (40), 26864-26874.
  • Chanda, D.; Hnat, J.; Paidar, M.; Schauer, J.; Bouzek, K., Journal of Power Sources 2015, 285, 217-226.
  • Chia, X. Y.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M., Acs Nano 2015, 9 (5), 5164-5179.
  • Chromcakova, Z.; Obalova, L.; Kovanda, F.; Legut, D.; Titov, A.; Ritz, M.; Fridrichova, D.; Michalik, S.; Kustrowski, P.; Jiratova, K., Catalysis Today 2015, 257, 18-25.
  • Chromcakova, Z.; Obalova, L.; Kustrowski, P.; Drozdek, M.; Karaskova, K.; Jiratova, K.; Kovanda, F., Research on Chemical Intermediates 2015, 41 (12), 9319-9332.
  • Chua, C. K.; Sofer, Z.; Jankovsky, O.; Pumera, M., Chemphyschem 2015, 16 (4), 769-774.
  • Chua, C. K.; Sofer, Z.; Lim, C. S.; Pumera, M., Chemistry-a European Journal 2015, 21 (7), 3073-3078.
  • Chua, C. K.; Sofer, Z.; Luxa, J.; Pumera, M., Chemistry-a European Journal 2015, 21 (22), 8090-8095.
  • Chua, C. K.; Sofer, Z.; Simek, P.; Jankovsky, O.; Klimova, K.; Bakardjieva, S.; Kuckova, S. H.; Pumera, M., Acs Nano 2015, 9 (3), 2548-2555.
  • Jankovsky, O.; Sedmidubsky, D.; Simek, P.; Klimova, K.; Bousa, D.; Boothroyd, C.; Mackova, A.; Sofer, Z., Physical Chemistry Chemical Physics 2015, 17 (38), 25272-25277.
  • Jankovsky, O.; Sedmidubsky, D.; Simek, P.; Sofer, Z.; Ulbrich, P.; Bartunek, V., Ceramics International 2015, 41 (1), 595-601.
  • Jankovsky, O.; Sedmidubsky, D.; Sofer, Z.; Luxa, J.; Bartunek, V., Ceramics International 2015, 41 (3), 4644-4650.
  • Jankovsky, O.; Sedmidubsky, D.; Vitek, J.; Simek, P.; Sofer, Z., Journal of the European Ceramic Society 2015, 35 (3), 935-940.
  • Jankovsky, O.; Simek, P.; Klimova, K.; Sedmidubsky, D.; Pumera, M.; Sofer, Z., Carbon 2015, 89, 121-129.
  • Jankovsky, O.; Simek, P.; Luxa, J.; Sedmidubsky, D.; Tomandl, I.; Mackova, A.; Miksova, R.; Malinsky, P.; Pumera, M.; Sofer, Z., Chempluschem 2015, 80 (9), 1399-1407.
  • Jankovsky, O.; Simek, P.; Novacek, M.; Luxa, J.; Sedmidubsky, D.; Pumera, M.; Mackova, A.; Miksova, R.; Sofer, Z., Rsc Advances 2015, 5 (24), 18733-18739.
  • Jankovsky, O.; Sofer, Z.; Vitek, J.; Novacek, M.; Hlasek, T.; Sedmidubsky, D., Journal of the European Ceramic Society 2015, 35 (11), 3005-3012.
  • Jankovsky, O.; Sofer, Z.; Vitek, J.; Simek, P.; Ruzicka, K.; Maskova, S.; Sedmidubsky, D., Thermochimica Acta 2015, 605, 22-27.
  • Jankovsky, O.; Sofer, Z.; Vitek, J.; Simek, P.; Ruzicka, K.; Svoboda, P.; Sedmidubsky, D., Thermochimica Acta 2015, 600, 89-94.
  • Januscak, J.; Vaclavik, J.; Sot, P.; Pechacek, J.; Vilhanova, B.; Kuzma, M.; Kacer, P., Chemicke Listy 2015, 109 (7), 492-498.
  • Kalachyova, Y.; Alkhimova, D.; Kostejn, M.; Machac, P.; Svorcik, V.; Lyutakov, O., Rsc Advances 2015, 5 (113), 92869-92877.
  • Kalachyova, Y.; Lyutakov, O.; Goncharova, I.; Svorcik, V., Optical Materials Express 2015, 5 (12), 2761-2767.
  • Kalachyova, Y.; Lyutakov, O.; Kostejn, M.; Clupek, M.; Svorcik, V., Electronic Materials Letters 2015, 11 (2), 288-294.
  • Kalachyova, Y.; Mares, D.; Lyutakov, O.; Kostejn, M.; Lapcak, L.; Svorcik, V., Journal of Physical Chemistry C 2015, 119 (17), 9506-9512.
  • Kasalkova, N. S.; Buricova, L.; Slepicka, P.; Kolska, Z.; Svorcik, V., Chemicke Listy 2015, 109 (11), 879-884.
  • Klepetarova, B.; Makrlik, E.; Dytrtova, J. J.; Bohm, S.; Vanura, P.; Storch, J., Journal of Molecular Structure 2015, 1097, 124-128.
  • Klyushina, A.; Pacultova, K.; Krejcova, S.; Slowik, G.; Jiratova, K.; Kovanda, F.; Ryczkowski, J.; Obalova, L., Catalysis Today 2015, 257, 2-10.
  • Kment, S.; Hubicka, Z.; Krysa, J.; Sekora, D.; Zlamal, M.; Olejnicek, J.; Cada, M.; Ksirova, P.; Remes, Z.; Schmuki, P.; Schubert, E.; Zboril, R., Applied Catalysis B-Environmental 2015, 165, 344-350.
  • Kment, S.; Kmentova, H.; Hubicka, Z.; Olejnicek, J.; Cada, M.; Krysa, J., Research on Chemical Intermediates 2015, 41 (12), 9343-9355.
  • Kodym, R.; Drakselova, M.; Panek, P.; Nemecek, M.; Snita, D.; Bouzek, K., Electrochimica Acta 2015, 179, 538-555.
  • Kohout, M.; Bielec, B.; Steindl, P.; Trettenhahn, G.; Lindner, W., Tetrahedron 2015, 71 (18), 2698-2707.
  • Kohout, M.; Kozmik, V.; Slabochova, M.; Tuma, J.; Svoboda, J.; Novotna, V.; Pociecha, D., Liquid Crystals 2015, 42 (1), 87-103.
  • Kolarova, K.; Vosmanska, V.; Rimpelova, S.; Ulbrich, P.; Svorcik, V., Journal of Nanoscience and Nanotechnology 2015, 15 (12), 10120-10126.
  • Kralik, A.; Linhart, I.; Vana, L.; Moulisova, A., Chemical Research in Toxicology 2015, 28 (6), 1317-1325.
  • Krysa, J.; Baudys, M.; Mills, A., Catalysis Today 2015, 240, 132-137.
  • Kubatik, T. F.; Pala, Z.; Neufuss, K.; Vilemova, M.; Musalek, R.; Stoulil, J.; Slepicka, P.; Chraska, T., Surface & Coatings Technology 2015, 282, 163-170.
  • Kubesova, A.; Tejkalova, H.; Syslova, K.; Kacer, P.; Vondrousova, J.; Tyls, F.; Fujakova, M.; Palenicek, T.; Horacek, J., Plos One 2015, 10 (1).
  • Latiff, N.; Teo, W. Z.; Sofer, Z.; Huber, S.; Fisher, A. C.; Pumera, M., Rsc Advances 2015, 5 (83), 67485-67492.
  • Latiff, N. M.; Teo, W. Z.; Sofer, Z.; Fisher, A. C.; Pumera, M., Chemistry-a European Journal 2015, 21 (40), 13991-13995.
  • Lennerova, D.; Kovanda, F.; Brozek, J., Applied Clay Science 2015, 114, 265-272.
  • Lim, C. S.; Chua, C. K.; Sofer, Z.; Klimova, K.; Boothroyd, C.; Pumera, M., Journal of Materials Chemistry A 2015, 3 (22), 11920-11929.
  • Lim, C. S.; Sofer, Z.; Jankovsky, O.; Wang, H.; Pumera, M., Rsc Advances 2015, 5 (123), 101949-101958.
  • Lim, C. S.; Sofer, Z.; Mazanek, V.; Pumera, M., Nanoscale 2015, 7 (29), 12527-12534.
  • Lim, C. S.; Sofer, Z.; Pumera, M., Chemnanomat 2015, 1 (5), 359-363.
  • Lim, C. S.; Tan, S. M.; Sofer, Z.; Pumera, M., Acs Nano 2015, 9 (8), 8474-8483.
  • Lim, C. S.; Wang, L.; Chua, C. K.; Sofer, Z.; Jankovsky, O.; Pumera, M., Journal of Materials Chemistry A 2015, 3 (16), 8346-8352.
  • Linhart, I.; Himl, M.; Zidkova, M.; Balikova, M.; Lhotkova, E.; Palenicek, T., Toxicology Letters 2015, 238 (2), S371-S371.
  • Liska, A.; Flidrova, K.; Lhotak, P.; Ludvik, J., Monatshefte Fur Chemie 2015, 146 (5), 857-862.
  • Loo, A. H.; Bonanni, A.; Sofer, Z.; Pumera, M., Chemphyschem 2015, 16 (11), 2304-2306.
  • Loo, A. H.; Bonanni, A.; Sofer, Z.; Pumera, M., Electrochemistry Communications 2015, 50, 39-42.
  • Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V., Materials Science & Engineering C-Materials for Biological Applications 2015, 49, 534-540.
  • Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V., Journal of Nanoparticle Research 2015, 17 (3).
  • Mackova, M.; Miksatko, J.; Budka, J.; Eigner, V.; Curinova, P.; Lhotak, P., New Journal of Chemistry 2015, 39 (2), 1382-1389.
  • Makrlik, E.; Bohm, S.; Kvicalova, M.; Vanura, P.; Asfari, Z., Molecular Physics 2015, 113 (21), 3264-3270.
  • Makrlik, E.; Bohm, S.; Sykora, D.; Klepetarova, B.; Vanura, P.; Polasek, M., Chemical Physics Letters 2015, 642, 39-42.
  • Makrlik, E.; Bohm, S.; Vanura, P., Journal of Molecular Structure 2015, 1100, 184-187.
  • Makrlik, E.; Bohm, S.; Vanura, P., Journal of Molecular Liquids 2015, 209, 134-137.
  • Makrlik, E.; Bohm, S.; Vanura, P., Monatshefte Fur Chemie 2015, 146 (9), 1395-1399.
  • Makrlik, E.; Bohm, S.; Vanura, P., Journal of Molecular Structure 2015, 1081, 395-399.
  • Makrlik, E.; Bohm, S.; Vanura, P.; Ruzza, P., Molecular Physics 2015, 113 (12), 1472-1477.
  • Makrlik, E.; Bohm, S.; Vanura, P.; Trnka, L., Journal of Molecular Liquids 2015, 204, 264-267.
  • Makrlik, E.; Dytrtova, J. J.; Vanura, P.; Sykora, J.; Cirkva, V.; Storch, J., Chemical Physics Letters 2015, 633, 105-108.
  • Makrlik, E.; Klepetarova, B.; Sykora, D.; Bohm, S.; Vanura, P.; Storch, J., Chemical Physics Letters 2015, 635, 355-359.
  • Makrlik, E.; Skora, D.; Bohm, S.; Vanura, P.; Cirkva, V.; Storch, J.; Polasek, M., Journal of Molecular Structure 2015, 1100, 150-153.
  • Marek, I.; Novak, P.; Mlynar, J.; Vojtech, D.; Kubatik, T. F.; Malek, J., Acta Physica Polonica A 2015, 128 (4), 597-601.
  • Marek, I.; Vojtech, D.; Michalcova, A.; Kubatik, T. F., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2015, 627, 326-332.
  • Marysko, M.; Hejtmanek, J.; Laguta, V.; Sofer, Z.; Sedmidubsky, D.; Simek, P.; Vesely, M.; Mikulics, M.; Buchal, C.; Mackova, A.; Malinsky, P.; Wilhelm, R. A., Journal of Applied Physics 2015, 117 (17).
  • Matejkova, M.; Soukup, K.; Kastanek, F.; Capek, P.; Grabowski, J.; Stanczyk, K.; Solcova, O., Chemical Engineering & Technology 2015, 38 (4), 667-674.
  • Mayorga-Martinez, C. C.; Ambrosi, A.; Eng, A. Y. S.; Sofer, Z.; Pumera, M., Advanced Functional Materials 2015, 25 (35), 5611-5616.
  • Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M., Angewandte Chemie-International Edition 2015, 54 (48), 14317-14320.
  • Mazanek, V.; Jankovsky, O.; Luxa, J.; Sedmidubsky, D.; Janousek, Z.; Sembera, F.; Mikulics, M.; Sofer, Z., Nanoscale 2015, 7 (32), 13646-13655.
  • Michalcova, A.; Vojtech, D.; Kubatik, T. F.; Stehlikova, K.; Brabec, F.; Marek, I., Acta Physica Polonica A 2015, 128 (4), 640-642.
  • Michaljanicova, I.; Slepicka, P.; Heitz, J.; Barb, R. A.; Sajdl, P.; Svorcik, V., Applied Surface Science 2015, 339, 144-150.
  • Michaljanicova, I.; Slepicka, P.; Vesely, M.; Kolska, Z.; Svorcik, V., Materials Letters 2015, 144, 15-18.
  • Mikolasova, D.; Rubesova, K.; Hlasek, T.; Jakes, V.; Oswald, J.; Remsa, J., Ceramics-Silikaty 2015, 59 (2), 164-168.
  • Miksova, R.; Hnatowicz, V.; Mackova, A.; Malinsky, P.; Slepicka, P., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2015, 354, 205-209.
  • Miksova, R.; Mackova, A.; Malinsky, A.; Slepicka, P.; Svorcik, V., Polymer Degradation and Stability 2015, 122, 110-121.
  • Mojr, V.; Svobodova, E.; Strakova, K.; Nevesely, T.; Chudoba, J.; Dvorakova, H.; Cibulka, R., Chemical Communications 2015, 51 (60), 12036-12039.
  • Mokry, J.; Jankovsky, O.; Luxa, J.; Sedmidubsky, D., Thermochimica Acta 2015, 619, 26-31.
  • Moulis, F.; Krysa, J., Research on Chemical Intermediates 2015, 41 (12), 9233-9242.
  • Moulisova, A.; Linhart, I., Heterocyclic Communications 2015, 21 (2), 61-65.
  • Mraz, J.; Linhart, I.; Duskova, U.; Hanzlikova, I.; Dabrowska, L.; Moulisova, A.; Hejl, K., Toxicology Letters 2015, 238 (2), S60-S60.
  • Mraz, J.; Linhart, I.; Hanzlikova, I.; Duskova, U.; Dabrowska, L.; Chrastecka, H.; Vajtrova, R.; Alanova, P., Toxicology Letters 2015, 238 (2), S266-S266.
  • Msallamova, S.; Novak, P.; Kouril, M.; Stoulil, J., Materials and Corrosion-Werkstoffe Und Korrosion 2015, 66 (5), 498-503.
  • Nadherny, L.; Jankovsky, O.; Sofer, Z.; Leitner, J.; Martin, C.; Sedmidubsky, D., Journal of the European Ceramic Society 2015, 35 (2), 555-560.
  • Nasir, M. Z. M.; Sofer, Z.; Ambrosi, A.; Pumera, M., Nanoscale 2015, 7 (7), 3126-3129.
  • Nasir, M. Z. M.; Sofer, Z.; Pumera, M., Chemelectrochem 2015, 2 (11), 1713-1718.
  • Nekvindova, P.; Mackova, A.; Malinsky, P.; Cajzl, J.; Svecova, B.; Oswald, J.; Wilhelm, R. A., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2015, 365, 89-93.
  • Nekvindova, P.; Svecova, B.; Stanek, S.; Vytykacova, S.; Mackova, A.; Malinsky, P.; Machovic, V.; Spirkova, J., Ceramics-Silikaty 2015, 59 (3), 187-193.
  • Novak, P.; Michalcova, A.; Skolakova, A.; Prusa, F.; Kriz, J.; Marek, I.; Kubatik, T. F.; Karlik, M.; Hausild, P.; Kopecek, J., Acta Physica Polonica A 2015, 128 (4), 561-563.
  • Novotna, Z.; Reznickova, A.; Rimpelova, S.; Vesely, M.; Kolska, Z.; Svorcik, V., Rsc Advances 2015, 5 (52), 41428-41436.
  • Pabst, W.; Gregorova, E., Materials Science and Technology 2015, 31 (15), 1801-1808.
  • Pabst, W.; Gregorova, E.; Rambaldi, E.; Bignozzi, M. C., Ceramics-Silikaty 2015, 59 (4), 326-330.
  • Paidar, M.; Vazac, K.; Roubalik, M.; Bouzek, K., Desalination and Water Treatment 2015, 56 (12), 3203-3206.
  • Palmas, S.; Rodrigo, M.; Bouzek, K., Journal of Applied Electrochemistry 2015, 45 (7), 635-635.
  • Panek, P.; Kodym, R.; Snita, D.; Bouzek, K., Journal of Membrane Science 2015, 492, 588-599.
  • Pausova, S.; Krysa, J.; Jirkovsky, J.; Forano, C.; Mailhot, G.; Prevot, V., Applied Catalysis B-Environmental 2015, 170, 25-33.
  • Pekarek, S.; Mikes, J.; Krysa, J., Applied Catalysis a-General 2015, 502, 122-128.
  • Pelclova, D.; Barosova, H.; Kukutschova, J.; Zdimal, V.; Navratil, T.; Fenclova, Z.; Vlckova, S.; Schwarz, J.; Zikova, N.; Kacer, P.; Komarc, M.; Belacek, J.; Zakharov, S., Journal of Breath Research 2015, 9 (3).
  • Pelclova, D.; Barosova, H.; Zdimal, V.; Fenclova, Z.; Navratil, T.; Vlckova, S.; Kacer, P.; Zakharov, S., Clinical Toxicology 2015, 53 (7), 645-645.
  • Pelclova, D.; Zacharov, S.; Zdimal, V.; Fenclova, Z.; Vlckova, S.; Syslova, K.; Kuzma, M.; Navratil, T.; Komarc, M.; Kacer, P., Clinical Toxicology 2015, 53 (4), 297-298.
  • Poh, H. L.; Sofer, Z.; Simek, P.; Tomandl, I.; Pumera, M., Chemistry-a European Journal 2015, 21 (22), 8130-8136.
  • Pokorny, P.; Kouril, M.; Stoulil, J.; Bouska, P.; Simon, P.; Juranek, P., Materiali in Tehnologije 2015, 49 (6), 847-856.
  • Polivkova, M.; Valova, M.; Siegel, J.; Rimpelova, S.; Hubacek, T.; Lyutakov, O.; Svorcik, V., Rsc Advances 2015, 5 (90), 73767-73774.
  • Prajzler, V.; Nekvindova, P.; Hyps, P.; Jerabek, V., Journal of Optoelectronics and Advanced Materials 2015, 17 (11-12), 1597-1602.
  • Prajzler, V.; Nekvindova, P.; Hyps, P.; Jerabek, V., Radioengineering 2015, 24 (2), 442-448.
  • Prokop, M.; Bystron, T.; Bouzek, K., Electrochimica Acta 2015, 160, 214-218.
  • Prusa, F.; Vojtech, D.; Blahova, M.; Michalcova, A.; Kubatik, T. F.; Cizek, J., Materials & Design 2015, 75, 65-75.
  • Rapouch, J.; Bystriansky, J., Corrosion Engineering Science and Technology 2015, 50 (2), 149-154.
  • Rapouch, J.; Bystriansky, J.; Sefl, V.; Svobodova, M., Materiali in Tehnologije 2015, 49 (4), 543-548.
  • Reznickova, A.; Novotna, Z.; Kolska, Z.; Kasalkova, N. S.; Rimpelova, S.; Svorcik, V., Materials Science & Engineering C-Materials for Biological Applications 2015, 52, 259-266.
  • Reznickova, A.; Novotna, Z.; Kvitek, O.; Kolska, Z.; Svorcik, V., Journal of Nanoscience and Nanotechnology 2015, 15 (12), 10053-10073.
  • Rubesova, K.; Hlasek, T.; Jakes, V.; Huber, S.; Hejtmanek, J.; Sedmidubsky, D., Journal of the European Ceramic Society 2015, 35 (2), 525-531.
  • Sandoval, M. L.; Talou, M. H.; Martinez, A. G. T.; Camerucci, M. A.; Gregorova, E.; Pabst, W., Journal of the American Ceramic Society 2015, 98 (10), 3014-3021.
  • Sedmidubsky, D.; Holba, P., Journal of Thermal Analysis and Calorimetry 2015, 120 (1), 183-188.
  • Shahsavani, E.; Feizi, N.; Eigner, V.; Dusek, M.; Khalaji, A. D., Journal of Structural Chemistry 2015, 56 (5), 1003-1007.
  • Shariatinia, Z.; Moghadam, E. J.; Maghsoudi, N.; Mousavi, H. S. M.; Dusek, M.; Eigner, V., Zeitschrift Fur Anorganische Und Allgemeine Chemie 2015, 641 (5), 967-978.
  • Schauer, J.; Hnat, J.; Brozova, L.; Zitka, J.; Bouzek, K., Journal of Membrane Science 2015, 473, 267-273.
  • Schauer, J.; Zitka, J.; Pientka, Z.; Krivcik, J.; Hnat, J.; Bouzek, K., Journal of Applied Polymer Science 2015, 132 (40).
  • Siegel, J.; Polivkova, M.; Staszek, M.; Kolarova, K.; Rimpelova, S.; Svorcik, V., Materials Letters 2015, 145, 87-90.
  • Simek, P.; Klimova, K.; Sedmidubsky, D.; Jankovsky, O.; Pumera, M.; Sofer, Z., Nanoscale 2015, 7 (1), 261-270.
  • Simek, P.; Sedmidubsky, D.; Huber, S.; Klimova, K.; Marysko, M.; Mikulics, M.; Sofer, Z., Materials Chemistry and Physics 2015, 164, 108-114.
  • Simek, P.; Sedmidubsky, D.; Klimova, K.; Mikulics, M.; Marysko, M.; Vesely, M.; Jurek, K.; Sofer, Z., Journal of Crystal Growth 2015, 414, 62-68.
  • Skacel, J.; Budka, J.; Eigner, V.; Lhotak, P., Tetrahedron 2015, 71 (13), 1959-1965.
  • Skeren, T.; Vesely, M.; Capek, P.; Kral, J., Physical Review B 2015, 92 (23).
  • Sladkova, V.; Skalicka, T.; Skorepova, E.; Cejka, J.; Eigner, V.; Kratochvil, B., Crystengcomm 2015, 17 (25), 4712-4721.
  • Slepicka, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolska, Z.; Svorcik, V., Journal of Nanoparticle Research 2015, 17 (1).
  • Slepicka, P.; Kasalkova, N. S.; Siegel, J.; Kolska, Z.; Bacakova, L.; Svorcik, V., Biotechnology Advances 2015, 33 (6), 1120-1129.
  • Slepicka, P.; Mala, Z.; Rimpelova, S.; Kasalkova, N. S.; Svorcik, V., Reactive & Functional Polymers 2015, 95, 71-79.
  • Sofer, Z.; Jankovsky, O.; Libanska, A.; Simek, P.; Novacek, M.; Sedmidubsky, D.; Mackova, A.; Miksova, R.; Pumera, M., Nanoscale 2015, 7 (23), 10535-10543.
  • Sofer, Z.; Jankovsky, O.; Simek, P.; Sedmidubsky, D.; Sturala, J.; Kosina, J.; Miksova, R.; Mackova, A.; Mikulics, M.; Pumera, M., Acs Nano 2015, 9 (5), 5478-5485.
  • Sofer, Z.; Simek, P.; Mazanek, V.; Sembera, F.; Janousek, Z.; Pumera, M., Chemical Communications 2015, 51 (26), 5633-5636.
  • Spendlikova, I.; John, J.; Cuba, V.; Jirasek, J.; Lhotak, P., Journal of Radioanalytical and Nuclear Chemistry 2015, 304 (1), 257-262.
  • Staszek, M.; Siegel, J.; Rimpelova, S.; Lyutakov, O.; Svorcik, V., Materials Letters 2015, 158, 351-354.
  • Stejskal, F.; Eigner, V.; Dvorakova, H.; Curinova, P.; Lhotak, P., Tetrahedron Letters 2015, 56 (39), 5357-5361.
  • Stekrova, M.; Matouskova, M.; Vyskocilova, E.; Cerveny, L., Research on Chemical Intermediates 2015, 41 (11), 9003-9013.
  • Stekrova, M.; Zizkova, P.; Vyskocilova, E.; Kolena, J.; Cerveny, L., Journal of Porous Materials 2015, 22 (1), 73-81.
  • Stofik, M.; Semeradtova, A.; Maly, J.; Kolska, Z.; Nedela, O.; Wrobel, D.; Slepicka, P., Colloids and Surfaces B-Biointerfaces 2015, 128, 363-369.
  • Storch, J.; Zadny, J.; Strasak, T.; Kubala, M.; Sykora, J.; Dusek, M.; Cirkva, V.; Matejka, P.; Krbal, M.; Vacek, J., Chemistry-a European Journal 2015, 21 (6), 2343-2347.
  • Stoulil, J.; Hemmer, V.; Sefl, V.; Bystriansky, J., Materials and Corrosion-Werkstoffe Und Korrosion 2015, 66 (4), 342-346.
  • Stoulil, J.; Pfeifer, T.; Svadlena, J.; Michalcova, A.; Fojt, J.; Marek, I.; Medlin, R., Materials and Corrosion-Werkstoffe Und Korrosion 2015, 66 (12), 1397-1401.
  • Stoulil, J.; Prosek, T.; Nazarov, A.; Oswald, J.; Kriz, P.; Thierry, D., Materials and Corrosion-Werkstoffe Und Korrosion 2015, 66 (8), 777-782.
  • Sturala, J.; Bohacova, S.; Chudoba, J.; Metelkova, R.; Cibulka, R., Journal of Organic Chemistry 2015, 80 (5), 2676-2699.
  • Svanda, J.; Lyutakov, O.; Vosmanska, V.; Svorcik, V., Journal of Applied Polymer Science 2015, 132 (16).
  • Synytsya, A.; Choi, D. J.; Pohl, R.; Na, Y. S.; Capek, P.; Lattova, E.; Taubner, T.; Choi, J. W.; Lee, C. W.; Park, J. K.; Kim, W. J.; Kim, S. M.; Lee, J.; Park, Y. I., Marine Biotechnology 2015, 17 (6), 718-735.
  • Tan, S. M.; Ambrosi, A.; Sofer, Z.; Huber, S.; Sedmidubsky, D.; Pumera, M., Chemistry-a European Journal 2015, 21 (19), 7170-7178.
  • Tan, S. M.; Sofer, Z.; Pumera, M., Nanoscale 2015, 7 (19), 8879-8883.
  • Teo, W. Z.; Chua, C. K.; Sofer, Z.; Pumera, M., Chemistry-a European Journal 2015, 21 (37), 13020-13026.
  • Teo, W. Z.; Sofer, Z.; Sembera, F.; Janousek, Z.; Pumera, M., Rsc Advances 2015, 5 (129), 107158-107165.
  • Toh, R. J.; Eng, A. Y. S.; Sofer, Z.; Sedmidubsky, D.; Pumera, M., Chemelectrochem 2015, 2 (7), 982-987.
  • Toh, R. J.; Sofer, Z.; Pumera, M., Chemphyschem 2015, 16 (16), 3527-3531.
  • Tomanova, P.; Sturala, J.; Budesinsky, M.; Cibulka, R., Molecules 2015, 20 (11), 19837-19848.
  • Tomek, P.; Hrouzek, P.; Kuzma, M.; Sykora, J.; Fiser, R.; Cerny, J.; Novak, P.; Bartova, S.; Simek, P.; Hof, M.; Kavan, D.; Kopecky, J., Chemical Research in Toxicology 2015, 28 (2), 216-224.
  • Trisovic, N.; Antanasijevic, J.; Toth-Katona, T.; Kohout, M.; Salamonczyk, M.; Sprunt, S.; Jakli, A.; Fodor-Csorba, K., Rsc Advances 2015, 5 (80), 64886-64891.
  • Tuma, J.; Lyutakov, O.; Simek, P.; Hnatowicz, V.; Svorcik, V., Materials Letters 2015, 158, 388-391.
  • Uhlirova, T.; Gregorova, E.; Pabst, W.; Necina, V., Journal of the European Ceramic Society 2015, 35 (1), 187-196.
  • Vajglova, Z.; Vesely, M.; Hejda, S.; Vondrackova, M.; Kristal, J.; Cajthaml, T.; Kresinova, Z.; Triska, J.; Kluson, P.; Jiricny, V., Research on Chemical Intermediates 2015, 41 (12), 9373-9381.
  • Vesely, M.; Bultreys, T.; Peksa, M.; Lang, J.; Cnudde, V.; Van Hoorebeke, L.; Kocirik, M.; Hejtmanek, V.; Solcova, O.; Soukup, K.; Gerke, K.; Stallmach, F.; Capek, P., Transport in Porous Media 2015, 110 (1), 81-111.
  • Vesely, M.; Capek, P.; Diblikova, P.; Hoferova, A.; Zamostny, P., Chemicke Listy 2015, 109 (1), 51-+.
  • Vesely, M.; Vajglova, Z.; Kotas, P.; Kristal, J.; Ponec, R.; Jiricny, V., Environmental Science and Pollution Research 2015, 22 (7), 4949-4963.
  • Vojtech, D.; Kubasek, J.; Capek, J.; Pospisilova, I., Materiali in Tehnologije 2015, 49 (6), 877-882.
  • von Koschitzky, I.; Gerhardt, H.; Lammerhofer, M.; Kohout, M.; Gehringer, M.; Laufer, S.; Pink, M.; Schmitz-Spahnke, S.; Strube, C.; Kaiser, A., Amino Acids 2015, 47 (8), 1663-1663.
  • von Koschitzky, I.; Gerhardt, H.; Lammerhofer, M.; Kohout, M.; Gehringer, M.; Laufer, S.; Pink, M.; Schmitz-Spanke, S.; Strube, C.; Kaiser, A., Amino Acids 2015, 47 (6), 1155-1166.
  • Vosmanska, V.; Kolarova, K.; Rimpelova, S.; Kolska, Z.; Svorcik, V., Rsc Advances 2015, 5 (23), 17690-17699.
  • Vrbkova, E.; Skypala, T.; Vyskocilova, E.; Cerveny, L., Research on Chemical Intermediates 2015, 41 (12), 9195-9205.
  • Vrbkova, E.; Vyskocilova, E.; Cerveny, L., Reaction Kinetics Mechanisms and Catalysis 2015, 114 (2), 675-684.
  • Vrbkova, E.; Vyskocilova, E.; Cerveny, L., Chemicke Listy 2015, 109 (1), 7-13.
  • Vrzal, L.; Kratochvilova-Simanova, M.; Landovsky, T.; Polivkova, K.; Budka, J.; Dvorakova, H.; Lhotak, P., Organic & Biomolecular Chemistry 2015, 13 (37), 9610-9618.
  • Vyklicky, V.; Krausova, B.; Cerny, J.; Balik, A.; Zapotocky, M.; Novotny, M.; Lichnerova, K.; Smejkalova, T.; Kaniakova, M.; Korinek, M.; Petrovic, M.; Kacer, P.; Horak, M.; Chodounska, H.; Vyklicky, L., Scientific Reports 2015, 5.
  • Wang, H.; Sofer, Z.; Moo, J. G. S.; Pumera, M., Chemical Communications 2015, 51 (48), 9899-9902.
  • Wang, L.; Lee, C. Y.; Kirchgeorg, R.; Liu, N.; Lee, K.; Kment, S.; Hubicka, Z.; Krysa, J.; Olejnicek, J.; Cada, M.; Zboril, R.; Schmuki, P., Research on Chemical Intermediates 2015, 41 (12), 9333-9341.
  • Wang, L.; Sofer, Z.; Luxa, J.; Pumera, M., Advanced Materials Interfaces 2015, 2 (9).
  • Wang, L.; Sofer, Z.; Pumera, M., Chemelectrochem 2015, 2 (3), 324-327.
  • Wong, C. H. A.; Sofer, Z.; Pumera, M., Chemistry-a European Journal 2015, 21 (23), 8435-8440.
  • Zajicova, M.; Eigner, V.; Budka, J.; Lhotak, P., Tetrahedron Letters 2015, 56 (41), 5529-5532.
  • Zbuzek, M.; Vrablik, A.; Tukac, V.; Vesely, M.; Prokesova, A.; Cerny, R., Catalysis Today 2015, 256, 261-268.
  • Zitka, J.; Bleha, M.; Schauer, J.; Galajdova, B.; Paidar, M.; Hnat, J.; Bouzek, K., Desalination and Water Treatment 2015, 56 (12), 3167-3173.
  • Zlamal, M.; Krysa, J., Catalysis Today 2015, 252, 162-167.
[poduzel] => stdClass Object ( [12795] => stdClass Object ( [nazev] => [seo_title] => A resistometric probe for corrosion rate measurement in air [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

A resistometric probe for corrosion rate measurement in air

Milan Kouřil1, Jan Stoulil1,

1Vysoká škola chemicko-technologická v Praze, Ústav kovových materiálů a korozního inženýrství

Užitný vzor CZ 24648

 

The resistometric technique is used for decades for monitoring of corrosion rate of metals in various environments, including air. Corrosion depth is measured by means of electrical resistance increase of a thin metallic conductor made of the metal of interest. However, the material selection is quite limited on the market. The authors developed a wide range of probes differing in kind of metal and sensitivity. The innovative design of the probes eliminates construction imperfections of competing resistometric sensors that are already established in practical applications. The original construction reduces inaccuracy in corrosion depth determination. The probe constitutes of a thin metallic track deposited on a non-conductive substrate, analogous to printed circuit board. The probe in operation is inserted in a connector of a device that regularly collects a loss of a metal due to corrosion.  The probes as well as the logger were developed within the Musecorr project supported by European Commission. Currently, the corrosion monitoring system is successful on the marked and it establishes successfully in the fields of cultural heritage protection, long-distance and overseas transportation of metallic goods, protection of sensitive electronic equipment, development of materials and construction elements in automotive industry, corrosion monitoring of buried structures and corrosion science.

The resistometric probe was developed exclusively on the Institute of Chemical Technology, Prague. The workers of ICT Prague developed the production technique of the sensors that are based on lamination of thin metallic foils on a glass-fibre substrate, including mainly the surface treatment procedure of the foils resulting in sufficient adherence to the substrate. M. Kouřil was responsible for the surface treatment technology development and construction optimization of the sensors. J. Stoulil was responsible for designing and verifying the protective efficiency of the sensor’s reference part masking. M. Kouřil is now responsible for production and commercial utilization of the sensors.

[iduzel] => 12795 [canonical_url] => //fcht.vscht.cz/research/papers/resistometric-probe [skupina_www] => Array ( ) [url] => /research/papers/resistometric-probe [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12790] => stdClass Object ( [obsah] => [iduzel] => 12790 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) [12802] => stdClass Object ( [nazev] => [seo_title] => Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation

Aleksandra Rybak1, Zbigniew J. Gryzwna1, Petr Sysel2

1Department of Physical Chemistry and Technology of Polymers, Section of Physics and Applied Mathematics, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland

2 Ústav polymerů, Vysoká škola chemicko-technologická v Praze   

Sep. Purif. Technol. 2013, 118, 424-431 IF=2.894

 

The materials based on the quite new combination of a thermally stable hyperbranched polyimide matrix and neodymium magnetic powder with a specific geometry have been tested as the flat, dense membranes for air separation. The very hopeful oxygen  enrichment in one permeation run was obtained. Therefore, these materials should be taken into consideration  in larger-scale gas separation tests.

Both the solutions of polyimide precursors, linear and hyperbranched polyamic acids, and the corresponding pure polyimides were  prepared   and characterized at the Institute of Chemical Technology, Prague. The manuscript was written in the association with other co-authors.

[iduzel] => 12802 [canonical_url] => //fcht.vscht.cz/research/papers/mixed-matrix-membranes [skupina_www] => Array ( ) [url] => /research/papers/mixed-matrix-membranes [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12801] => stdClass Object ( [nazev] => [seo_title] => SETTER: web server for RNA structure comparison [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

SETTER: web server for RNA structure comparison.

Čech P. 1; Hoksza D.1,2; Svozil D.1

1Laboratory of Informatics and Chemistry, Institute of Chemical Technology Prague, 16628 Czech Republic

2SIRET Research Group, Department of Software Engineering, FMP, Charles University in Prague, 11800 Czech Republic

Nucleic Acids Research W1: W42-W48 2012

The transfer of genetic information was, for a long time, considered as the main biological function of RNA. However, recent evidence shows that all organisms contain a wealth of small untranslated RNAs (so-called non-protein coding RNAs – ncRNAs) that function in a variety of cellular processes. These findings have directly challenged our understanding of biological regulation and extended our view of RNA as an important player in the development of complex organisms. The function of RNA is largely determined by its 3D structure. Thus, the development of methods for the comparative RNA function annotation based on structural similarity became the important part of contemporary bioinformatics research. Though several such methods are available, they restrict the size of aligned structures, as well as achieve low speeds when aligning large RNA molecules. Therefore, we have developed the SETTER (SEcondary sTructure-based TERtiary Structure Similarity Algorithm) algorithm. The SETTER algorithm is, at the moment, the fastest approach for the structural alignment of RNA molecules. Not only it offers unprecedented speed even for largest RNA structures (no size limit is imposed), but also its accuracy is comparable to other, though slower, approaches. To simplify the access to our method, we have also developed a freely accessible web server that serves as an intuitive interface to the RNA structure alignment by SETTER. We believe that this offering will bolster the use of RNA structural and functional annotation between a broad scientific community.
D. Svozil instigated the project, participated in the development of the algorithm, software and the web server, collected data sets and benchmarked the algorithm. D. Hoksza proposed and developed the algorithm and software. P. Čech developed and implemented the SETTER web server. Most of the project was made on Institute of Chemical Technology, only the software was partially developer on the co-operating institution.

[iduzel] => 12801 [canonical_url] => //fcht.vscht.cz/research/papers/setter [skupina_www] => Array ( ) [url] => /research/papers/setter [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12799] => stdClass Object ( [nazev] => [seo_title] => Process for manufacturing of cyanuric fluoride [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Process for manufacturing of cyanuric fluoride

Jiří Trejbal, Ing. PhD., Martin Zapletal, Ing. PhD.

Ústav organické technologie, Vysoká škola chemicko-technologická v Praze

 

Process for manufacturing of cyanuric fluoride which company HUNTSMAN utilize as dye intermediate product in their plant placed in Thailand was to be developed. At Department of organic technology of Institute of chemical technology in Prague entire experimental research including pilot-scale test was carried out in years 2010-2012. Together with experimental research new production unit was developed. Due to the technology is multi-stage batch process, design included calculations and design of apparatus, compilation of PFD schemes, design of regulation and control system. Subsequently, employees of ICT got involved at start-up of new unit in Thailand. Completely new chemical technology was successfully developed from laboratory scale up to the industrial unit. From energy point of view process is very thrifty and environmentally friendly. Investment costs for complete design and build up of new unit exceeded $10 million. It is thus unique outcome of applied research achieved at university department in the whole Czech Republic. Said technology was completely developed at UCT including months of laboratory studies with poisonous and potentialy dangerous compounds, difficult and complicated design of new unit. Finally, investment costs of project were unique for process devepoled in the Czech Republic.

All laboratory works, designing, laboratory-scale pilot plant operations of some parts of technology were carried out at Department of Organic Technology of University of Chemicstry and Technology in Prague.

[iduzel] => 12799 [canonical_url] => //fcht.vscht.cz/research/papers/cyanuric-fluoride [skupina_www] => Array ( ) [url] => /research/papers/cyanuric-fluoride [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12798] => stdClass Object ( [nazev] => [seo_title] => Meta-Bridged calix[4]arenes: a straightforward synthesis via organomercurial chemistry [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Meta-Bridged calix[4]arenes: a straightforward synthesis via organomercurial chemistry

Flídrová K;1 Slavík P;1 Václav Eigner;2 Hana Dvořáková;3 Pavel Lhoták1*

1Ústav organické chemie, 2Ústav chemie pevných látek. 3Centrální laboratoře, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6

Chem. Commun. 2013, 49, 6749 – 6751 IF=6.378

 

An unprecedented regioselectivity of the mercuration reaction leading to the meta-substituted calix[4]arenes represents a novel type of substitution in classical calixarene chemistry. As this substitution pattern has not been accessible so far, it paves the way for the synthesis of unusual calixarene derivatives. Starting from meta-mercurated calix[4]arene the Pd-catalysed bridging of two neighbour phenolic units enabled the preparation of systems where themetapositions of the calixarene skeleton are intramolecularly bridged via additional single bond. Palladium-catalysed C-H activation thus leads to completely novel type of calix[4]arenes unknown in the literature. Highly distorted and rigid cavities of these compounds can be attractive for many applications in supramolecular chemistry as the complexation ability and/or conformational behaviour of parent macrocycles are substantially amended. The novel methodology represents very straightforward approach to a unique substitution pattern in calixarene chemistry with potential applications in the design of novel calixarene-based receptors (including inherently chiral systems).

The whole work including design, synthesis, structure elucidation and characterization of new compounds was done in the Institute of Chemical Technology, Prague.

[iduzel] => 12798 [canonical_url] => //fcht.vscht.cz/research/papers/12798 [skupina_www] => Array ( ) [url] => /research/papers/12798 [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12797] => stdClass Object ( [nazev] => [seo_title] => Trospium Chloride: Unusual Example of Polymorphism Based on Structure Disorder [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Trospium Chloride: Unusual Example of Polymorphism Based on Structure Disorder

Skořepová, E1., Čejka, J.1, Hušák, M.1, Eigner, V.1,3, Rohlíček, J.1,3, Šturc, A.2, Kratochvíl, B.1,

1VŠCHT Praha, Technická 5, 166 28 Praha 6; 2Interpharma Praha, a.s. Komořanská 955, Praha 12; 3Fyzikální ústav AVČR, Na Slovance 2, 182 21 Praha 8

Cryst. Growth Des. 13 (2013), 5193–5203. IF=4,689

 

The results uncover the first ever disorder- and pseudosymmetry-based polymorphism, which was almost undetectable by standard powder diffraction methods. It combines both very rare structural effect and interesting legal problem, as the powder diffraction pattern is still considered the prime criterion of phase identification in patent law. As trospium chloride was believed to be a well-defined compound with no polymorphism, the currently used analytical methods should be revised for phase characterization in pharmaceutical industry.

The scientific part of this study was done by ICT Prague staff. The co-author affiliated  to Interpharma Praha take care about the investigated material source primary.

[iduzel] => 12797 [canonical_url] => //fcht.vscht.cz/research/papers/12797 [skupina_www] => Array ( ) [url] => /research/papers/12797 [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12796] => stdClass Object ( [nazev] => [seo_title] => TRIS buffer in simulated body fluid distorts the assessment of glass–ceramic scaffold bioactivity [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

TRIS buffer in simulated body fluid distorts the assessment of glass–ceramic scaffold bioactivity

Dana Rohanová1, Aldo Roberto Boccaccini2,3, Darmawati Mohamad Yunos2, Diana Horkavcová1, Iva Březovská1, Aleš Helebrant1

1Department of Glass and Ceramics, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic, 2Department of Materials, Imperial College, London, Prince Consort Road, London SW7 2BP, UK,3Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, 91058 Erlangen, Germany

Acta Biomaterialia 7, (2011) 2623-2630, IF=5.093

 

The bioactive materials are often tested in simulated body fluid (SBF). This solution is mimicking the inorganic part of blood plasma and it is usually buffered with tris-(hydroxymethyl) aminomethane (TRIS). The presented study demonstrated the significant effect of the TRIS on interaction between the bioactive material and SBF which could influence the in vitro tests of bioactivity of biomaterials.

The glass-ceramic scaffold derived from Bioglass (containing 77 wt.% of crystalline phases Na2O.2CaO.3SiO2 and CaO.SiO2 and 23 wt.% of residual glass phase) was leached in different solutions. The glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxy-methyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The original results of SBF-scaffold interaction were found. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems.

The tested material was prepared by co-authors at Imperial College. The interaction of this material with simulated body fluids was studied at Dept. of Glass and Ceramics ICT Prague. The interpretation of interaction between scaffold and different solutions was based on discussion of all authors.

[iduzel] => 12796 [canonical_url] => //fcht.vscht.cz/research/papers/tris-buffer [skupina_www] => Array ( ) [url] => /research/papers/tris-buffer [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12792] => stdClass Object ( [nazev] => [seo_title] => Sulphur Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2 or CS2 Gas [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Sulphur Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2 or CS2 Gas

H.L. Poh1, P. Šimek2, Z. Sofer2, M. Pumera1

1 Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

2 Institute of Chemical Technology, Department of Inorganic Chemistry, Technicka 5, 166 28 Prague 6 (Czech Republic)

ACS Nano, 7(6) (2013) 5262-5272, IF=12.062

 

The excellence of this contribution lies in a successfully performed synthesis of graphene with sulphur being covalently bonded to the graphene framework. This unique method of the synthesis in gram scale was developed and technologically managed at the Department of inorganic chemistry. The synthesized material exhibits outstanding electrocatalytic properties that are usually achieved by nanoparticles of transition metals and their compounds. Electrocatalytic properties were demonstrated on industrially important oxygen reduction in alkaline environment.

The synthesis method was developed and accomplished at ICT Prague (Department of Inorgnaic Chemistry). Moreover the standard characterization of the prepared material, namely the zeta-potencial measurement, combustible elemental analysis, electric transport measurement and Raman spectroscopy, was also carried out at ICT Prague. The colaborating partner's laboratory provided the electrochemical measurement, IR spectroscopy, XPS and electron microscopy facilities. The manuscript writing and editing was a collective work equally shared between both groups.

[iduzel] => 12792 [canonical_url] => //fcht.vscht.cz/research/papers/sulphur-doped-graphene [skupina_www] => Array ( ) [url] => /research/papers/sulphur-doped-graphene [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12793] => stdClass Object ( [nazev] => [seo_title] => Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell.
J. Mališ1, P. Mazúr1, J. Schauer2, M. Paidar1, K. Bouzek1

1Ústav anorganické technologie, VŠCHT Praha; 2Ústav makromolekulární chemie AV ČR, v.v.i.

International Journal of Hydrogen Energy 38 (2013) 4697-4704. IF: 3,548

 

Excellency of this result consists in several aspects: (i) preparation of this interesting type of materials has been managed and important interdependencies between the compatibility and structure of the ionic liquids and polymeric support identified, (ii) methodology of characterisation of the membranes prepared was developed and (iii) for the first time the novel membranes were carefully tested in the real laboratory fuel cell. Results achieved represent important input for future directing research in the polymer electrolytes for the high temperature PEM fuel cells technology. This concerns especially modern and often studied solid polymer electrolytes based on the polymer supported ionic liquids. This is an important field of research towards sustainable energy production and storage.

Whereas our colleague from the Institute of Macromolecular Chemistry, Czech Academy of Sciences, was responsible for the materials synthesis, the ICT Prague team was responsible for the materials testing. It included characterisation of the selected ionic liquids, determination of the prepared membranes morphology by SEM, determination of ionic conductivity of the prepared membrane materials in broad range of conditions (temperature and humidity), development of corresponding gas diffusion electrodes for testing in laboratory fuel cell, testing in the laboratory fuel cell and analysis of the obtained data. On the base of performed analysis feedback to the synthesis group was provided allowing for selection of most promising direction towards new materials synthesis.

[iduzel] => 12793 [canonical_url] => //fcht.vscht.cz/research/papers/polymer-supported [skupina_www] => Array ( ) [url] => /research/papers/polymer-supported [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12794] => stdClass Object ( [nazev] => [seo_title] => On the formation of intermetallics in Fe-Al system – an in situ XRD study [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

On the formation of intermetallics in Fe-Al system – an in situ XRD study

Pavel Novák1, Alena Michalcová1, Ivo Marek1, Martina Mudrová2, Karel Saksl3, Jozef Bednarčík4, Petr Zikmund5, Dalibor Vojtěch1

1Vysoká škola chemicko-technologická v Praze, Ústav kovových materiálů a korozního inženýrství, 2Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídící techniky, 3Ústav materiálového výskumu Slovenskej Akadémie Vied, Košice, Slovensko,   4Deutsches Elektronen-Synchrotron (HASYLAB), Hamburg, Německo, 5ČVUT Praha, Ústav strojírenské technologie

Intermetallics 32 (2013) 127-136 IF=1.857

 

Reactive powder metallurgy starting from pure metallic powders is one of the alternatives of intermetallic compounds production. I some alloy systems, as e.g. Fe-Al, this method fails due to high porosity and heterogeneity of the product. Reasons for this behaviour were not successfully described up to this work, since the reactions proceed at high temperatures and very quickly. This work uses in-situ methods (diffraction of synchrotron high-energy X-rays with high-speed detection, thermal analysis) for the determination of the mechanism of proceeding reactions. This paper is the world’s first work, where the mechanism of reactions in Fe-Al system was described complexly in dependence on the process parameters (temperature, heating rate, duration of reactive sintering process). Obtained results show the way how the reactive sintering powder metallurgy could be applied in production of FeAl alloys.

The workers of ICT Prague carried out most of the experimental works including in-situ experiments and their evaluation. This work is a part of continuous research lead by P. Novák. A. Michalcová planned and realized the XRD experiments together with P. Novák. A. Michalcová, I. Marek and M. Mudrová treated the results by visualization and software analysis. P. Novák was responsible for the experimental model experiments for the description of the process kinetics. D. Vojtěch helped with the processing of the kinetics data and evaluation of the results. Other co-authors outside UCT Prague worked as technical support during in-situ experiments (K.Saksl, J. Bednarčík) and measurement by thermal camera (P.Zikmund).

[iduzel] => 12794 [canonical_url] => //fcht.vscht.cz/research/papers/formation-of-intermetallics [skupina_www] => Array ( ) [url] => /research/papers/formation-of-intermetallics [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [12800] => stdClass Object ( [nazev] => [seo_title] => Nanostructuring of Solid Surfaces [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [obsah] =>

Nanostructuring of Solid Surfaces

V.Švorčík, P.Slepička, J.Siegel, O.Lyutakov, A.Řezníčková, O.Kvítek, T.Hubáček, N.Slepičková Kasálková, Z.Kolská1

Ústav inženýrství pevných látek, Vysoká škola chemicko-technologická v Praze

1Přírodovědecká fakulta, Universita J.E.Purkyně, Ústí nad Labem

In: Nanostructures: Properties, Production, Methods and Applications, (Ed. Y.Dong), Nova Sci. Publ., New York, pp. 3-109 (2013), ISBN: 978-1-62618-081-9

 

Excellent on this relatively extensive chapter is that it summarizes the findings of the preparation, characterization and application potential of nanostructures (especially metal and polymer) on solid substrates. The chapter focuses primarily on the published results of our work for the last 6 years. The results which were published in 54 journal papers from our scientific group are summarized and discussed. These results may find application in material engineering, especially in the field of tissue engineering (treatment of skin cover loss and transplantation of blood vessels) and electronic engineering (electronics - increase of the adhesion of the metal layer on the substrate, or photonics - preparation of metamaterials).

Most of the experiments, e.g. modification and characterization of physico-chemical surface properties of materials including biocompatibility and anti-microbial tests were performed with the equipment at the Institute of Chemical Technology Prague. Zeta-potential measurement was determined at the University of J.E. Purkyne, Usti nad Labem.

[iduzel] => 12800 [canonical_url] => //fcht.vscht.cz/research/papers/nanostructuring [skupina_www] => Array ( ) [url] => /research/papers/nanostructuring [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 11686 [canonical_url] => //fcht.vscht.cz/research/papers [skupina_www] => Array ( ) [url] => /research/papers [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [11687] => stdClass Object ( [nazev] => Research Patents [seo_title] => Research Patents [seo_desc] => Research Patents Faculty of Chemical Technology University of Chemistry and Technology Prague UCT Prague [autor] => [autor_email] => [obsah] =>

[poduzel] => stdClass Object ( [12790] => stdClass Object ( [obsah] => [iduzel] => 12790 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) ) [iduzel] => 11687 [canonical_url] => //fcht.vscht.cz/research/patents [skupina_www] => Array ( ) [url] => /research/patents [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461337
VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright UCT Prague 2017
Informations provided by the Dean's Office. Technical support by the Computing Centre.
switch to desktop version